2018年5月27日星期日

ICML 2018论文:再生神经网络:利用知识蒸馏收敛到更优的模型

在一篇关于算法建模的著名论文(Breiman 等,2001)中,Leo Breiman 指出,不同的随机算法过程(Hansen & Salamon,1990;Liaw 等,2002 年;Chen & Guestrinn,2016)可以产生具有相似验证性能的不同模型。此外,他还指出,我们可以将这些模型组成一个集成算法,从而获得优于单个模型的预测能力。有趣的是,给定这样一个强大的算法集成,人们往往可以找到一个更简单的模型(至少不比集成模型更复杂)来仿效此集成并实现其性能。

在《再生树(Born Again Trees)》(Breiman & Shang,1996)一书中,Breiman 率先提出了这一想法,学习单棵决策树能达到多棵树预测的性能。这些再生树近似集成方法的决策,且提供了决策树的可解释性。随后一系列论文重新讨论了再生模型的概念。在神经网络社区,类似的想法也出现在压缩模型(Bucilua 等,2006)和知识蒸馏(Hinton 等,2015)概念中。在这两种情况下,这种想法通常是把能力强大、表现出色的教师模型的知识迁移给更紧凑的学生模型(Ba & Caruana,2014;Urban 等,2016;Rusu 等,2015)。虽然在以监督方式直接训练学生模型(student)时,其能力不能与教师模型(teacher)相匹配,但经过知识蒸馏,学生模型的预测能力会更接近教师模型的预测能力。

我们建议重新审视知识蒸馏,但侧重点不同以往。我们的目的不再是压缩模型,而是将知识从教师模型迁移给具有相同能力的学生模型。在这样做的过程中,我们惊奇地发现,学生模型成了大师,明显超过教师模型。联想到明斯基的自我教学序列(Minsky』s Sequence of Teaching Selves)(明斯基,1991),我们开发了一个简单的再训练过程:在教师模型收敛之后,我们对一个新学生模型进行初始化,并且设定正确预测标签和匹配教师模型输出分布这个双重目标,进而对其进行训练。

通过这种方式,预先训练的教师模型可以偏离从环境中求得的梯度,并有可能引导学生模型走向一个更好的局部极小值。我们称这些学生模型为「再生网络」(BAN),并表明当应用于 DenseNet、ResNet 和基于 LSTM 的序列模型时,再生网络的验证误差始终低于其教师模型。对于 DenseNet,我们的研究表明,尽管收益递减,这个过程仍可应用于多个步骤中。

我们观察到,由知识蒸馏引起的梯度可以分解为两项:含有错误输出信息的暗知识(DK)项和标注真值项,后者对应使用真实标签获得原始梯度的简单尺度缩放。我们将第二个术语解释为基于教师模型对重要样本的最大置信度,使用每个样本的重要性权重和对应的真实标签进行训练。这说明了 KD 如何在没有暗知识的情况下改进学生模型。

此外,我们还探讨了 Densenet 教师模型提出的目标函数能否用于改进 ResNet 这种更简单的架构,使其更接近最优准确度。我们构建了复杂性与教师模型相当的 Wide-ResNet(Zagoruyko & Komodakis,2016b)和 Bottleneck-ResNet(He 等,2016 b)两个学生模型,并证明了这些 BAN-ResNet 性能超过了其 DenseNet 教师模型。类似地,我们从 Wide-ResNet 教师模型中训练 DenseNet 学生模型,前者大大优于标准的 ResNet。因此,我们证明了较弱的教师模型仍然可以提升学生模型的性能,KD 无需与强大的教师模型一起使用。

图 1:BAN 训练过程的图形表示:第一步,从标签 Y 训练教师模型 T。然后,在每个连续的步骤中,从不同的随机种子初始化有相同架构的新模型,并且在前一学生模型的监督下训练这些模型。在该过程结束时,通过多代学生模型的集成可获得额外的性能提升。

表 1:不同深度和宽度的 Wide-ResNet 与不同深度和增长因子的 DenseNet,在 CIFAR10 数据集上的测试误差。

表 4:Densenet 在修正 CIFAR100 数据集上的测试误差:Densenet-90-60 用作教师模型,与学生模型每次空间转换后的隐藏状态大小相同,但深度和压缩率不同。

表 5:Densenet 到 ResNet:BAN-ResNet 在 CIFAR100 上的测试误差,后者由具有不同 Dense Block 数和压缩因子的 DenseNet 90-60 教师模型训练而成。在所有 BAN 架构中,首先需要指明每一个卷积模块的单元数量,然后还有关于 DenseNet 90-60 卷积块的输入和输出通道比。所有 BAN 体系结构都与固定后的教师模型共享第一层(conv1)和最后一层(fc-output),每个密集块都被残差块有效地替换。

表 6:不同 BAN-LSTM 语言模型在 PTB 数据集上的验证/测试复杂度

论文:再生神经网络(Born Again Neural Networks)

论文地址:https://ift.tt/2k3fMKN

知识蒸馏(KD)包括将知识从一个机器学习模型(教师模型)迁移到另一个机器学习模型(学生模型)。一般来说,教师模型具有强大的能力和出色的表现,而学生模型则更为紧凑。通过知识迁移,人们希望从学生模型的紧凑性中受益,而我们需要一个性能接近教师模型的紧凑模型。本论文从一个新的角度研究知识蒸馏:我们训练学生模型,使其参数和教师模型一样,而不是压缩模型。令人惊讶的是,再生神经网络(BAN)在计算机视觉和语言建模任务上明显优于其教师模型。基于 DenseNet 的再生神经网络实验在 CIFAR-10 和 CIFAR-100 数据集上展示了当前最优性能,验证误差分别为 3.5% 和 15.5%。进一步的实验探索了两个蒸馏目标:(i)由 Max 教师模型加权的置信度(CWTM)和(ii)具有置换预测的暗知识(DKPP)。这两种方法都阐明了知识蒸馏的基本组成部分,说明了教师模型输出在预测和非预测类中的作用。

我们以不同能力的学生模型为实验对象,重点研究未被充分探究的学生模型超过教师模型的案例。我们的实验表明,DenseNet 和 ResNet 之间的双向知识迁移具有显著优势。

]]> 原文: https://ift.tt/2LAsQUH
RSS Feed

机器知心

IFTTT

没有评论:

发表评论

JavaScript 之父联手近万名开发者集体讨伐 Oracle:给 JavaScript 一条活路吧!- InfoQ 每周精要848期

「每周精要」 NO. 848 2024/09/21 头条 HEADLINE JavaScript 之父联手近万名开发者集体讨伐 Oracle:给 JavaScript 一条活路吧! 精选 SELECTED C++ 发布革命性提案 "借鉴"Rust...