2018年7月30日星期一

几乎零能耗零延迟:UCLA发明光衍射神经网络,登上《科学》

夏乙 发自 凹非寺量子位 报道 | 公众号 QbitAI

深度学习,现在已经成立几乎每一个图像识别、语音识别、机器翻译系统的标配组件,而它的缺点也一直在被各界人士吐槽:

不够快,太耗能,不可解释……

加州大学洛杉矶分校(UCLA)的一组科学家们,就要从另一个角度,来解决不够快和能耗高的问题。

UCLA电子工程系教授Aydogan Ozcan带着自己的团队,把神经网络从芯片上搬到了现实世界中,依靠光的传播,实现几乎零能耗、零延迟的深度学习。

这个解决方案叫做D2NN:衍射深度神经网络(Diffractive Deep Neural Network)。它是光学工具、3D打印和神经网络的结合。

他们的成果,登上了Science。

这个系统有着传统神经网络无法匹敌的优点:一是更快,在D2NN里,信息传递的速度,等于光速;二是能耗接近于0:除了最开始要提供一个光源之外,就不再需要耗电了。

D2NN由多个衍射层构成,一层上的每一个点都相当于神经网络的一个神经元。它的训练方式和深度学习一样,只不过得到的不是神经元的权重,而是神经元的透光/反射系数。

训练完成,得到D2NN的最终设计,就到了制造阶段。这些衍射层会被3D打印出来,在它学会的任务上做推断

在推断过程中,在这个神经网络中传递的并不是人类可见的光,而是0.4太赫兹频率的单色光。Ozcan将D2NN比作用光来连接神经元、传递信息的实体大脑。

Ozcan团队在这项研究中,制造了不同类型的D2NN,有用来给图像分类的(上图B),有用来成像的(上图C)。

一个D2NN设计出来、打印完成后,还可以继续优化。

比如说,科学家们针对MNIST手写数字识别任务,训练了一个5层的D2NN,每一层的尺寸是8cm×8cm,达到了91.75%的准确率。

然后,他们又为这个D2NN加了两层,来优化性能。于是,这个7层网络在MNIST上的分类准确率达到了93.39%。

在比MNIST稍微复杂一些的基准数据集Fashion-MNIST上,5层的D2NN最高实现了86.33%的准确率。

当然,D2NN现在还只能算是个婴儿,和卷积神经网络现在动辄99%的准确率没法比。

接下来,Ozcan团队还打算制造尺寸更大、层数更多的D2NN。

说不定有一天,这种新型的神经网络强大起来,我们会对不需耗电就能识别人脸的摄像头习以为常。

论文在此:

http://innovate.ee.ucla.edu/wp-content/uploads/2018/07/2018-optical-ml-neural-network.pdf

欢迎大家关注我们的专栏:量子位 - 知乎专栏

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复"招聘"两个字。

量子位 QbitAI· 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



via 量子位 - 知乎专栏 https://ift.tt/2LzVMjq
RSS Feed

RSS5

IFTTT

没有评论:

发表评论

JavaScript 之父联手近万名开发者集体讨伐 Oracle:给 JavaScript 一条活路吧!- InfoQ 每周精要848期

「每周精要」 NO. 848 2024/09/21 头条 HEADLINE JavaScript 之父联手近万名开发者集体讨伐 Oracle:给 JavaScript 一条活路吧! 精选 SELECTED C++ 发布革命性提案 "借鉴"Rust...