| 编者按:我们几乎每天都会接收到各种各样的推荐信息,从新闻、购物到吃饭、娱乐。个性化推荐系统作为一种信息过滤的重要手段,可以依据我们的习惯和爱好推荐合适的服务。但传统的推荐系统容易出现稀疏性和冷启动的问题,而知识图谱作为一种新兴类型的辅助信息,近几年逐渐引起了研究人员的关注,本文将向大家介绍知识图谱的相关知识以及知识图谱在推荐系统中可能的应用价值。一起来学习一下吧! 小王是一名程序员。早上八点,他被闹铃叫醒,拿起手机开始浏览手机上的新闻APP推荐的最新消息: 
随后,小王想起昨晚放在购物车里的鞋还没有下单。于是,他打开了某购物APP,查看了一下自己的购物车: 
但是他觉得下面推荐的板鞋似乎更适合自己,于是他买了一双。 吃完早饭,小王坐地铁去上班。地铁上无聊的小王打开了某音乐APP,系统已经为他选好了推荐的歌曲: 
到了公司后,小王开始继续写没有完成的代码,但是始终无法把参数调到满意的水平。有些烦躁的小王想歇一歇,于是打开了某资讯APP,看了几个为他推荐的话题: 
就在他认真阅读的时候,经理注意到了他不在干活,很生气,于是严肃地批评了小王。小王感到很委屈,这时手机里的某求职类APP给他发来了推送: 
小王觉得这几个职位都挺适合自己的,于是心里有了跳槽的打算。到了午饭时间,小王打开了某外卖APP,查看了一下系统推荐的附近餐厅: 
小王一边吃着刚刚送来的外卖,一边浏览着某娱乐类APP,查看适合晚上和女朋友一起观看的演出推荐: 
晚上看完演出,小王和女朋友都非常满意,觉得这个APP的系统推荐很棒。 跟小王一样,我们几乎每个人每天都会使用多个APP中的推荐功能,这些功能的背后都是个性化推荐系统(personalized recommender systems)。随着互联网技术和产业的迅速发展,接入互联网的服务器数量和网页数量也呈指数级上升。用户面临着海量的信息,传统的搜索算法只能呈现给用户(user)相同的物品(item)排序结果,无法针对不同用户的兴趣爱好提供相应的服务。信息爆炸使得信息的利用率反而降低,这种现象被称为信息超载(information overload)。 推荐问题从本质上说就是代替用户评估其从未看过、接触过和使用过的物品,包括书籍、电影、新闻、音乐、餐馆、旅游景点等。推荐系统作为一种信息过滤的重要手段,是当前解决信息超载问题的最有效的方法之一,是面向用户的互联网产品的核心技术。 按照预测对象的不同,推荐系统一般可以分成两类:一类是评分预测(rating prediction),例如在电影类应用中,系统需要预测用户对电影的评分,并以此为根据推送其可能喜欢的电影。这种场景下的用户反馈信息表达了用户的喜好程度,因此这种信息也叫显式反馈(explicit feedback);另一类是点击率预测(click-through rateprediction),例如在新闻类应用中,系统需要预测用户点击某新闻的概率来优化推荐方案。这种场景下的用户反馈信息只能表达用户的行为特征(点击/未点击),而不能反映用户的喜爱程度,因此这种信息也叫隐式反馈(implicit feedback)。 
传统的推荐系统只使用用户和物品的历史交互信息(显式或隐式反馈)作为输入,这会带来两个问题:一,在实际场景中,用户和物品的交互信息往往是非常稀疏(sparse)的。例如,一个电影类APP可能包含了上万部电影,然而一个用户打过分的电影可能平均只有几十部。使用如此少量的已观测数据来预测大量的未知信息,会极大地增加算法的过拟合(overfitting)风险;二,对于新加入的用户或者物品,由于系统没有其历史交互信息,因此无法进行准确地建模和推荐,这种情况也叫做冷启动问题(cold start problem)。 解决稀疏性和冷启动问题的一个常见思路是在推荐算法中额外引入一些辅助信息(side information)作为输入。辅助信息可以丰富对用户和物品的描述、增强推荐算法的挖掘能力,从而有效地弥补交互信息的稀疏或缺失。常见的辅助信息包括: 社交网络(social networks):一个用户对某个物品感兴趣,他的朋友可能也会对该物品感兴趣; 用户/物品属性(attributes):拥有同种属性的用户可能会对同一类物品感兴趣; 图像/视频/音频/文本等多媒体信息(multimedia):例如商品图片、电影预告片、音乐、新闻标题等; 上下文(context):用户-物品交互的时间、地点、当前会话信息等。 …… 
如何根据具体推荐场景的特点将各种辅助信息有效地融入推荐算法一直是推荐系统研究领域的热点和难点,如何从各种辅助信息中提取有效的特征也是推荐系统工程领域的核心问题。 
在各种辅助信息中,知识图谱作为一种新兴类型的辅助信息近几年逐渐引起了研究人员的关注。知识图谱(knowledge graph)是一种语义网络,其结点(node)代表实体(entity)或者概念(concept),边(edge)代表实体/概念之间的各种语义关系(relation)。一个知识图谱由若干个三元组(h、r、t)组成,其中h和t代表一条关系的头结点和尾节点,r代表关系。 
上图展示的三元组表达了"陈凯歌导演了霸王别姬"这样一条事实,其中h=陈凯歌、t=霸王别姬、r=导演。 知识图谱包含了实体之间丰富的语义关联,为推荐系统提供了潜在的辅助信息来源。知识图谱在诸多推荐场景中都有应用的潜力,例如电影、新闻、景点、餐馆、购物等。和其它种类的辅助信息相比,知识图谱的引入可以让推荐结果更加具有以下特征: 


这里值得一提的是知识图谱和物品属性的区别。物品属性可以看成是在知识图谱中和某物品直接相连的一跳(1-hop)的节点,即一个弱化版本的知识图谱。事实上,一个完整的知识图谱可以提供物品之间更深层次和更长范围内的关联,例如,"《霸王别姬》-张国荣-香港-梁朝伟-《无间道》"。正因为知识图谱的维度更高,语义关系更丰富,它的处理也因此比物品属性要更加复杂和困难。 一般来说,现有的可以将知识图谱引入推荐系统的工作分为两类: 
基于该类方法的通用性,我们可以将知识图谱弱化为物品属性,然后应用该类方法即可。当然,这种做法的缺点也显而易见:它并非专门针对知识图谱设计,因此无法高效地利用知识图谱的全部信息。例如,该类方法难以利用多跳的知识,也难以引入关系(relation)的信息。 
知识图谱特征学习(Knowledge Graph Embedding)为知识图谱中的每个实体和关系学习得到一个低维向量,同时保持图中原有的结构或语义信息。事实上,知识图谱特征学习是网络特征学习(network embedding)的一个子领域,因为知识图谱包含特有的语义信息,所以知识图谱特征学习比通用的网络特征学习需要更细心和针对性的模型设计。一般而言,知识图谱特征学习的模型分类两类: 

由于知识图谱特征学习为每个实体和特征学习得到了一个低维向量,而且在向量中保持了原图的结构和语义信息,所以一组好的实体向量可以充分且完全地表示实体之间的相互关系,因为绝大部分机器学习算法都可以很方便地处理低维向量输入。因此,利用知识图谱特征学习,我们可以很方便地将知识图谱引入各种推荐系统算法中。概括地说,知识图谱特征学习可以: 降低知识图谱的高维性和异构性; 增强知识图谱应用的灵活性; 减轻特征工程的工作量; 减少由于引入知识图谱带来的额外计算负担。 在本篇中,我们分别介绍了推荐系统、知识图谱、以及知识图谱在推荐系统中的应用价值。作为推荐算法的辅助信息,知识图谱的引入可以极大地提高推荐系统的精准性、多样性和可解释性。在下周的文章中,我们将详述将知识图谱引入推荐系统的各种思路与实现,敬请期待! 参考文献 [1] Factorization machines with libfm [2] Personalized entity recommendation: A heterogeneous information network approach [3] Meta-graph based recommendation fusion over heterogeneous information networks [4] Knowledge graph embedding: A survey of approaches and applications ]]> 原文: https://ift.tt/2J8COzb |
没有评论:
发表评论