2018年5月9日星期三

英伟达官方解读:Volta Tensor Core GPU实现AI性能新里程碑

具备深度学习力量的人工智能现在已能解决一些曾被认为不可能解决的难题,比如自然语音和自动驾驶领域内的计算机理解和交谈。深度学习现在已能有效解决大量难题,在这种进展的推动下,算法复杂度的指数级增长已经带来了对更高速的计算的极大渴求。为了满足这些需求,英伟达设计了 Volta Tensor Core 架构。

英伟达和很多其它公司与研究者一直都在开发计算硬件和软件平台来解决这一需求。比如,谷歌打造了 TPU(张量处理单元)加速器,能够给可以运行在 TPU 上的数量有限的神经网络带来优良的表现。

在这篇博文中,我们将分享英伟达最近的一些进展,这些进展能为 AI 社区带来极大的 GPU 性能提升。采用这些改进,我们已经在单块芯片和单个服务器上实现了创纪录的 ResNet-50 性能表现。

最近,fast.ai 也宣布了他们在单个云实例上的创纪录性能表现,请参阅:https://ift.tt/2rgdRXw

我们的结果表明:

  • 在训练 ResNet-50 时,单个 V100 Tensor Core GPU 能实现每秒 1075 张图像的处理速度,相比于前一代 Pascal GPU,性能提升了 4 倍。

  • 具有 8 个 Tensor Core V100 的单个 DGX-1 服务器能实现每秒 7850 张图像的处理速度,几乎是一年前同样系统 4200 张图像/秒的处理速度的 2 倍。

  • 由 8 个 Tensor Core V100 驱动的单个 AWS P3 可以用不到 3 小时时间训练完 ResNet-50,比 TPU 实例快 3 倍。

图 1:Volta Tensor Core GPU 创造了 ResNet-50 的新速度记录(AWS P3.16xlarge 实例包含 8 个 Tesla V100 GPU)

英伟达 GPU 在多种不同算法上的大规模并行处理性能优异,自然非常适合深度学习。但不止于此。凭借我们多年的经验以及与全世界 AI 研究者的紧密合作,我们创造了一种针对多种深度学习模型优化过的新架构——英伟达 Tensor Core GPU。

通过将高速 NVLink 互连与深度优化组合到所有当前的框架中,我们实现了当前最佳的表现。英伟达 CUDA GPU 的编程能力能确保用于大量不同现代网络的性能表现,同时还能提供一个催生新型框架和未来深度网络创新发明的平台。

V100 Tensor Core 创造单块处理器最快速度记录

Volta GPU 中的英伟达 Tensor Core GPU 架构是英伟达深度学习平台巨大进步的代表。这种新型硬件能加速矩阵乘法和卷积计算,这些计算占到了训练神经网络计算操作的大部分。

英伟达 Tensor Core GPU 架构让我们既可以提供比单个功能的 ASIC 更优的性能,同时又是可编程的,可用于各种不同的工作负载。比如说,每个 Tesla V100 Tensor Core GPU 都能提供 125 TFLOPS(每秒万亿次浮点运算)的深度学习性能,相对而言,谷歌 TPU 芯片的速度是 45 TFLOPS。一个 Cloud TPU 中的 4 块 TPU 芯片能提供 180 TFLOPS 的性能;相比而言,4 块 V100 芯片能提供 500 TFLOPS 的性能。

我们的 CUDA 平台让每一种深度学习框架都能充分利用我们的 Tensor Core GPU 的全部力量来加速正在快速增多的各种神经网络类型,比如 CNN、RNN、GAN、RL 以及每年涌现的数以千计的变体。

让我们再向 Tensor Core 架构继续深入一点,以凸显其特有的能力。图 2 展示了 Tensor Core 正在操作以低精度 FP16 存储但以更高精度 FP32 计算的张量,这能在最大化吞吐量的同时仍然维持必要的精度。

图 2:Volta Tensor Core 矩阵乘法和累加

使用最近的软件改进,ResNet-50 训练现在可以在独立测试(standalone testing)中在单个 V100 上达到 1360 张图像/秒的惊人速度。我们现在正在努力将这个训练软件整合进流行的框架中,如下所述。

为了实现最佳的表现,Tensor Core 所运行的张量应该处于内存中一个通道交织的数据布局中(数量-高度-宽度-通道,通常简称为 NHWC)。训练框架在内存中所预期的布局是以通道为主要的数据布局(数量-通道-宽度-高度,通常简称为 NCHW。所以要使用 cuDNN 库来执行 NCHW 和 NHWC 之间的张量转置操作,如图 3 所示。正如之前提到的,因为现在卷积本身已经非常快了,所以这些转置会占到相当可观的一部分运行时间。

为了消除这些转置,我们采用的方法是直接用 NHWC 格式表示 ResNet-50 模型图中的每个张量,这是 MXNet 框架支持的功能。此外,我们还向 MXNet 和 cuDNN 添加了用于所有其它非卷积层的优化过的 NHWC 实现,从而在训练阶段无需任何张量转置。

图 3:优化过的 NHWC 格式能消除张量转置

阿姆达尔定律(Amdahl's Law)带来了另一个优化机会,该定律预测了并行处理的理论加速能力。因为 Tensor Core 能显著提升矩阵乘法和卷积层的速度,训练工作负载中的其它层就会占到运行时间的更大一部分。因此,我们确定了这些新的性能瓶颈并且对它们进行了优化。

很多非卷积层的性能都受限于在 DRAM 中移入或移出数据,如图 4 所示。将连续层融合到一起要用到片上内存和避免与 DRAM 的数据流动。比如,我们在 MXNet 中创造了一种图优化传递(graph optimization pass)来检测连续的 ADD 和 ReLU 层,并在任何可以替代的时候用融合后的实现来替代它们。使用 NNVM(神经网络虚拟机),在 MXNet 中实现这些类型的优化是很简单的。

图 4:融合层能消除数据读/写

最后,我们通过为常出现的卷积类型创建额外的专用核来继续优化单个卷积

我们目前正将这些优化方法中的许多方法纳入到多个深度学习框架中,其中包括 TensorFlow、PyTorch 和 MXNet。通过我们为 MXNet 贡献的方法,使用标准的 90 epoch 训练方案,我们在单个 Tensor Core V100 上实现了 1075 张图像/秒的性能,同时还实现了与单精度训练一样的 Top-1 分类准确度(超过 75%)。这为我们留下了进一步提升的巨大空间,因为我们可以在独立测试中实现 1360 张图像/秒的速度。英伟达 GPU Cloud(NGC)上的英伟达优化的深度学习框架容器将会提供这些性能提升。

最快的单节点速度记录

多个 GPU 可以作为单个节点运行,从而实现显著更高的吞吐量。但是,扩展成在单个服务器节点中合作的多个 GPU 需要在 GPU 之间有高带宽/低延迟的通信路径。我们的 NVLink 高速互连结构让我们可以将性能扩展成单个服务器中的 8 个 GPU。这些得到了大规模加速的服务器能提供 1 PFLOPS(每秒千万亿次浮点计算)的深度学习性能,并且可广泛用于云和内部部署。

但是,扩展到 8 个 GPU 会显著增加训练性能,甚至足以让该框架中主 CPU 执行的其它工作成为性能的限制因素。具体而言,该框架中向 GPU 馈送数据的流程需要很大的性能提升。

这个数据流程包括从磁盘读取编码的 JPEG 样本、解码样本、调整尺寸和增强图像(见图 5)。这些增强操作能提升神经网络的学习能力,让训练后的模型有更高准确度的预测表现。使用 8 个 GPU 处理该框架的训练部分时,这些重要的操作就会限制整体的性能表现。

图 5:用于图像解码和增强的数据流程

为了解决这一问题,我们开发了 DALI(数据增强库),这是一个不受限于具体框架的库,可以将 CPU 的工作负载迁移到 GPU 上执行。如图 6 所示,DALI 将部分 JPEG 解码工作以及尺寸调整和所有其它增强工作移到了 GPU 上。这些操作在 GPU 上的执行速度比在 CPU 上快得多,因此减轻了 CPU 的工作负载。DALI 凸显了 CUDA 的通用并行处理能力。去除了 CPU 的瓶颈限制,我们可以在单个节点上维持 7850 张图像/秒的处理速度。

图 6:使用 DALI 进行了 GPU 优化的工作负载

英伟达正在助力将 DALI 整合进所有主要的 AI 框架中。这个解决方案也让我们可以将性能扩展到不止 8 个 GPU,比如最近宣布的英伟达 DGX-2 系统,带有 16 个 Tesla V100 GPU。

最快的单个云实例速度记录

对于我们的单个 GPU 和单节点运行,我们使用了事实上标准的 90 epoch 来训练 ResNet-50 达到超过 75% 的准确度。但是,训练时间可以通过算法创新和超参数调节来进一步减少,以便更少的 epoch 也能达到同样的准确度。GPU 为 AI 研究者提供了编程能力,并且支持所有深度学习框架,从而让他们可以探索新的算法方法和利用已有的算法。

fast.ai 团队最近分享了他们的出色结果,使用 PyTorch 在远低于 90 epoch 内实现了很高的准确度。Jeremy Howard 和 fast.ai 的研究者整合了关键的算法创新和调节技术来在 ImageNet 上训练 ResNet-50,在单个 AWS P3 实例上仅使用了 3 个小时——而该实例包含 8 个 V100 Tensor Core GPU。相比于基于 TPU 的云实例(训练 ResNet-50 需要接近 9 小时时间),ResNet-50 在 GPU 云实例上的运行速度可以达到其 3 倍之多。

我们还进一步期望本博客中所描述的提升吞吐量的方法也将适用于其它方法(比如 fast.ai 的方法),并能帮助它们实现更快的融合。

带来指数级的性能提升

Alex Krizhevsky 使用 2 个 GTX 580 GPU 赢得了第一届 ImageNet 比赛以来,我们在加速深度学习方面已经取得了非凡的进展。Krizhevsky 花了 6 天时间才训练完他那出色的神经网络 AlexNet,其表现超越了当时其它所有图像识别方法,开启了深度学习革命。现在,使用我们最近宣布的 DGX-2,我们可以在短短 18 分钟内训练完 AlexNet。图 7 展示了在过去短短 5 年时间里实现的 500 倍性能提升。

图 7:在 ImageNet 数据集上训练 AlexNet 的时间

Facebook 人工智能研究所(FAIR)已经共享了他们的语言翻译模型 Fairseq:https://github.com/facebookresearch/fairseq。使用我们最近发布的 DGX-2 和我们为数众多的软件堆栈提升,我们在不到 1 年时间里在 Fairseq 上实现了 10 倍的性能提升(见图 8)。

图 8:训练 Facebook 的 Fairseq 的时间

研究者正在使用 AI 的力量来解决数不胜数的用例,图像识别和语言翻译只是其中的两个代表。在 GitHub 上,使用 GPU 加速的框架的神经网络项目数量已经超过了 60000。我们的 GPU 的编程能力能为 AI 社区正在构建的各种各样的神经网络提供加速。这样的快速提升让 AI 研究者可以去构想更加复杂的神经网络,以使用 AI 攻克富有挑战性的难题。

这些持续的提升改进源自我们为 GPU 加速的计算开发的全栈式的优化方法。从构建最先进的深度学习加速器到复杂系统(HBM、COWOS、SXM、NVSwitch、DGX),从高级数值库和深度软件堆栈(cuDNN、NCCL、NGC)到加速所有深度学习框架,英伟达在 AI 方面的努力能为 AI 开发者提供无与伦比的灵活性。

我们将继续优化整个堆栈并继续提供指数级的性能提升,以为 AI 社区提供推动深度学习创新向前发展的工具。

总结

AI 在继续变革每个行业,催生数不胜数的用例。理想的 AI 计算平台要能提供出色的性能,能够扩展支持巨大且越来越大的模型规模,并且还要具备编程能力以应对越来越多样化的模型架构。

英伟达的 Volta Tensor Core GPU 是目前世界上最快的 AI 处理器,单块芯片就能提供高达 125 TFLOPS 的深度学习性能。我们很快就将在单个服务器节点中集成 16 个 Tesla V100,以打造世界上最快的计算服务器,能提供高达 2 PFLOPS 的性能。

除了性能,每家服务器制造商的每个云为整个 AI 社区所提供的 GPU 的编程能力和广泛的可用性都在推动实现下一代人工智能

不管哪种深度学习框架,英伟达的硬件都能对其提供加速:Caffe2、Chainer、Cognitive Toolkit、Kaldi、Keras、Matlab、MXNET、PaddlePaddle、Pytorch 和 TensorFlow。此外,英伟达 GPU 能用于各种各样且越来越多的网络类型,其中包括 CNN、RNN、GAN、RL、混合网络架构以及每年新出现的数以千计的变体架构。AI 社区已经创造了很多精彩出色的应用,我们希望能为 AI 的未来发展提供力量。 

原文链接:https://ift.tt/2jB8nT1

]]> 原文: https://ift.tt/2jO4U3w
RSS Feed

机器知心

IFTTT

ACL 2018 | 百度提出交互式语言学习新方法:让智能体具备单次概念学习能力

语言是人类最自然的交流方式之一,通常被视为人类智能的基础。因此,对智能体来说,能够使用语言与人类进行交流至关重要。深度神经网络监督训练虽然在语言习得方面取得了令人欣慰的进展,但其在获取训练数据统计信息方面还存在问题。并且,它对新场景缺乏适应性,难以在避免低效的重新训练和灾难性遗忘的情况下灵活地获取新知识。此外,深度神经网络模型的监督训练需要大量的训练样本,而许多有趣的应用需要从少量数据中快速学习,这对监督训练来说是一个更大的挑战。

相比之下,人类的学习方式与监督设置截然不同(Skinner, 1957; Kuhl, 2004)。首先,人类在现实世界中采取行动,并从其行动的结果中吸取教训(Skinner, 1957; Kuhl, 2004; Petursdottir and Mellor, 2016)。对于运动等机械性动作,结果主要遵循几何和机械原理;对于语言,人类通过说话的方式来实现,其结果通常表现为来自会话伙伴(即教师)的口头回应和其它行为反馈(例如点头)。这些类型的反馈通常包含关于如何在随后的会话中提高语言技能的信息信号,在人类的语言习得过程中发挥了重要作用(Kuhl, 2004; Petursdottir and Mellor, 2016)。其次,人类显示出从少量数据中学习新概念的显著能力(Borovsky等,2003)。儿童仅从一个样本中似乎就能够做出推论,并在概念之间划出合理的界限,这足以证明人类的单次学习能力(Lake 等,2011 年)。

人类的语言习得过程和单次学习能力作为人类智能的一种表现形式是非常引人注目的,且对设计新的计算语言学习环境和算法具有启发意义。本论文采用会话作为语言学习交互环境(Skinner,1957)和获取新知识的自然接口(Baker 等,2002年)。论文作者提出了一种方法用于单次概念学习能力的交互式语言习得。该方法允许智能体从零开始学习基础语言,获得主动搜索和记忆新目标信息的可迁移技能,并仅仅通过与教师的会话交互来提高单次学习能力。

图 1:交互式语言和单次概念学习

在 S_1 阶段,教师可以提问、回答学习者的问题、做出陈述或不说话。教师还根据学习者的回应提供奖励作为回馈。学习者在理解教师的句子和通过解释器和说话人作出回应之间交替进行。图左:一开始,学习者几乎说不出任何有意义的话。图中:接着,它可以产生有意义的交互回应。图右:经过训练,当遇到樱桃图像时(学习者在训练过程中未曾见过,因此樱桃对它来说是一个新事物),学习者会就此提问(「这是什么」),并且在被教导过一次之后能够对另一个樱桃的实例做出正确的表述(「这是樱桃」)。

表 1:教师句子的语法。

图 2:网络结构。

(a) 整体结构图示。在每个时间步中,学习者使用解释器模块对教师的句子进行编码。视觉感知也被编码并用作从外部存储器检索信息的密钥。解释器 RNN 的最后状态将通过控制器传递。控制器的输出将被添加到输入并用作说话人 RNN 的初始状态。解释器 RNN 将利用从感知输入提取的重要性(用透明度来表示)加权信息来更新外部存储器。「mix」表示词嵌入向量的混合。(b)解释器 RNN 的结构(顶部)和说话人 RNN 的结构 (底部)。解释器 RNN 和说话人 RNN 共享参数。

图3:没有图像变化的单词级任务训练期间的奖励演变。

图4:没有图像变化的情况下单词级任务的测试性能。在动物数据集上训练模型,在水果数据集上进行测试。

图5:在动物数据集上以图像变化率 0.5(实线)和没有图像变化(虚线)训练出的模型在不同测试图像变化率下,在水果数据集上执行单词级任务的测试成功率和奖励。

图7:在新类别上提出方法的示例结果。学习者可以询问关于新类别的信息,并通过单词级注意力 η 和内容重要性 gmem,使用解释器从教师的句子中提取有用的信息。说话人通过融合门(fusion gate)g 在 RNN(小 g )和外部存储器(大 g )的信号之间自如切换,以生成句子回应。

图8:具有图像变化(变化率 = 0.5)句子级任务的测试性能。

表4:不同方法的对话实例。

论文:Interactive Language Acquisition with One-shot Visual Concept Learning through a Conversational Game 

论文链接:https://ift.tt/2G4B0ko

摘要:构建能够与人类进行自然语言交流、学习人类的智能体具有重要价值。监督语言学习主要受获取训练数据统计信息能力的限制,并且难以适应新场景,也难以在避免低效的重新训练和灾难性遗忘的情况下灵活地获取新知识。我们强调会话互动是语言习得和获取新知识的天然接口,并提出了一种通过互动会话游戏共同模仿和强化真实语言学习的方法。使用这种方法训练的智能体可以通过提出关于新目标的问题来主动获取信息,并且通过单次学习即可在随后的对话中使用刚刚学到的知识。与其他方法进行比较的结果验证了该方法的有效性。

]]> 原文: https://ift.tt/2KQk1FW
RSS Feed

机器知心

IFTTT

DeepMind大突破!AI模拟大脑导航功能,学会像动物一样“抄近路”

岳排槐 综合自澎湃、wired英国等量子位 出品 | 公众号 QbitAI

今天凌晨,DeepMind又有新Nature论文发布!

这次他们又训练出了一个AI智能体,学会了类似哺乳动物一样的"抄近路"能力,这次研究的目的,就是设法模仿人类大脑,用复杂的方式在周围空间里导航。

同时也用人工智能体验证了哺乳动物大脑中的"网格细胞"对基于向量的导航有支持作用。

这是一个前所未有的探索,被认为是理解大脑的一次重大进步。

当你沿着熟悉的街道前进,绕过障碍,找到最快抵达目的地的捷径时,大脑里发生了什么?这是一个非常复杂的事情。

科学家们在动物和人类大脑中找到了三种跟认路相关的细胞,分别是位置细胞、方向细胞和网格细胞。

位置细胞能在主体到达特定地点时放电,从而赋予对过往地点的记忆;方向细胞能感应前进的方向;网格细胞则是最神秘的一种:它们能将整个空间环境划分成蜂窝状的六边形网格,仿佛地图上的坐标系。

发现网格细胞的的莫索尔夫妇因此获得了2014年的诺贝尔生理学或医学奖。不过,网格细胞仅仅是在空间环境中提供GPS定位服务吗?

一些科学家猜测,它们也会参与矢量计算,辅助动物规划路径。

DeepMind团队决定用人工神经网络检验上述猜想。

人工神经网络是一种利用多层处理模拟大脑神经网络的运算结构。团队首先用深度学习算法训练神经网络学习哺乳动物的觅食运动路径,利用线速度、角速度等信号在视觉环境中进行定位。

研究人员随后发现,一种类似于网格细胞活动特征的结构自动诞生了!在此前的训练中,研究人员并未刻意引导神经网络产生此种结构。

DeepMind团队随后利用强化学习检验这种网格结构是否能够进行矢量导航。强化学习被普遍用于训练游戏AI,人类告诉AI一种游戏的得分奖惩机制,但却不教授游戏方法,由AI在反复进行游戏、努力争取更高分的过程中自我进化。

研究人员将之前自动出现的网格结构与一个更大型的神经网络架构结合成了人工智能体,置于虚拟现实的游戏环境中。经历强化学习后,该人工智能在游戏迷宫中向目的地前进的导航能力超越了一般人,达到了职业游戏玩家水平。它能像哺乳动物一样寻找新路线和抄近路。

最关键的是,当研究人员"静默"原来的网格结构后,人工智能体的导航能力就会变弱,判断目标的距离和方向都更不准确了。

论文作者之一Dharshan Kumaran说道:"我们证明了网格细胞远不只是给我们提供GPS定位信号,也是一种大脑赖以计算两个地点间的最短距离的核心导航机制。"

哈萨比斯说,要证明我们能构建出来我们想做的那种通用智能,大脑的存在就是一个证据。所以从神经科学中为新的算法寻找灵感,是很有道理的。但我们同时也相信这种启发应该是双向的,人工智能研究的见解也能为神经科学中的开放问题提供灵感。

"这项工作就是一个很好的例子:通过构建一个能在复杂环境中导航的人工智能体,我们强调了生物网格细胞在哺乳动物导航中的重要性,也拓宽了这方面的理解。"哈萨比斯表示。

DeepMind团队相信,类似的研究方法还可以用来探索大脑听觉和控制四肢的机制。在更远的将来,神经科学家们甚至可以用人工智能代替小白鼠来做实验。

这还有两篇研究人员的视频访谈,更细致的进行解读。

DeepMind训练了一个新AI破解人类大脑的秘密_腾讯视频人工智能与神经网络_腾讯视频

论文

这篇论文题目为:Vector-based navigation using grid-like representations in artificial agents 。

论文作者20多人,其中也包括哈萨比斯本人。

地址在此:https://ift.tt/2FZYPtB

论文预览传送门: http://t.cn/R3283LN

欢迎大家关注我们的专栏:量子位 - 知乎专栏

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复"招聘"两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



via 量子位 - 知乎专栏 https://ift.tt/2KR5V79
RSS Feed

RSS5

IFTTT

DeepMind大突破!AI模拟大脑导航功能,学会像动物一样“抄近路”

岳排槐 综合自澎湃、wired英国等量子位 出品 | 公众号 QbitAI

今天凌晨,DeepMind又有新Nature论文发布!

这次他们又训练出了一个AI智能体,学会了类似哺乳动物一样的"抄近路"能力,这次研究的目的,就是设法模仿人类大脑,用复杂的方式在周围空间里导航。

同时也用人工智能体验证了哺乳动物大脑中的"网格细胞"对基于向量的导航有支持作用。

这是一个前所未有的探索,被认为是理解大脑的一次重大进步。

当你沿着熟悉的街道前进,绕过障碍,找到最快抵达目的地的捷径时,大脑里发生了什么?这是一个非常复杂的事情。

科学家们在动物和人类大脑中找到了三种跟认路相关的细胞,分别是位置细胞、方向细胞和网格细胞。

位置细胞能在主体到达特定地点时放电,从而赋予对过往地点的记忆;方向细胞能感应前进的方向;网格细胞则是最神秘的一种:它们能将整个空间环境划分成蜂窝状的六边形网格,仿佛地图上的坐标系。

发现网格细胞的的莫索尔夫妇因此获得了2014年的诺贝尔生理学或医学奖。不过,网格细胞仅仅是在空间环境中提供GPS定位服务吗?

一些科学家猜测,它们也会参与矢量计算,辅助动物规划路径。

DeepMind团队决定用人工神经网络检验上述猜想。

人工神经网络是一种利用多层处理模拟大脑神经网络的运算结构。团队首先用深度学习算法训练神经网络学习哺乳动物的觅食运动路径,利用线速度、角速度等信号在视觉环境中进行定位。

研究人员随后发现,一种类似于网格细胞活动特征的结构自动诞生了!在此前的训练中,研究人员并未刻意引导神经网络产生此种结构。

DeepMind团队随后利用强化学习检验这种网格结构是否能够进行矢量导航。强化学习被普遍用于训练游戏AI,人类告诉AI一种游戏的得分奖惩机制,但却不教授游戏方法,由AI在反复进行游戏、努力争取更高分的过程中自我进化。

研究人员将之前自动出现的网格结构与一个更大型的神经网络架构结合成了人工智能体,置于虚拟现实的游戏环境中。经历强化学习后,该人工智能在游戏迷宫中向目的地前进的导航能力超越了一般人,达到了职业游戏玩家水平。它能像哺乳动物一样寻找新路线和抄近路。

最关键的是,当研究人员"静默"原来的网格结构后,人工智能体的导航能力就会变弱,判断目标的距离和方向都更不准确了。

论文作者之一Dharshan Kumaran说道:"我们证明了网格细胞远不只是给我们提供GPS定位信号,也是一种大脑赖以计算两个地点间的最短距离的核心导航机制。"

哈萨比斯说,要证明我们能构建出来我们想做的那种通用智能,大脑的存在就是一个证据。所以从神经科学中为新的算法寻找灵感,是很有道理的。但我们同时也相信这种启发应该是双向的,人工智能研究的见解也能为神经科学中的开放问题提供灵感。

"这项工作就是一个很好的例子:通过构建一个能在复杂环境中导航的人工智能体,我们强调了生物网格细胞在哺乳动物导航中的重要性,也拓宽了这方面的理解。"哈萨比斯表示。

DeepMind团队相信,类似的研究方法还可以用来探索大脑听觉和控制四肢的机制。在更远的将来,神经科学家们甚至可以用人工智能代替小白鼠来做实验。

这还有两篇研究人员的视频访谈,更细致的进行解读。

DeepMind训练了一个新AI破解人类大脑的秘密_腾讯视频人工智能与神经网络_腾讯视频

论文

这篇论文题目为:Vector-based navigation using grid-like representations in artificial agents 。

论文作者20多人,其中也包括哈萨比斯本人。

地址在此:https://ift.tt/2FZYPtB

论文预览传送门: http://t.cn/R3283LN

欢迎大家关注我们的专栏:量子位 - 知乎专栏

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复"招聘"两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



via 量子位 - 知乎专栏 https://ift.tt/2KR5V79
RSS Feed

RSS5

IFTTT

伊隆·马斯克与阿尔法狗之父Demis Hassabis共同入选英国皇家学会院士

郭一璞 发自 凹非寺没有和尚 量子位 报道 | 公众号 QbitAI

伊隆·马斯克今天(格林尼治时间5月9日)有了一个新title,英国皇家学会院士。

同时入选的还有阿尔法狗之父、DeepMind创始人Demis Hassabis。

在英国皇家学会官方网站公布的一份名单中,共有50位科学家入选了英国皇家学会院士,其中包含14名女性。

英国皇家学会成立于1660年,是世界上最古老的科学学院,大量世界上最杰出的科学家都是皇家学会的成员。与中国的中科院不同,英国皇家学会并不是英国一个国家研究院,而是所有英联邦都囊括在内的、受到英国女王(同时也是英联邦另外15个国家元首)保护的学术机构。

尽管历史风云变幻,英联邦早已不复往日的辉煌,而英国自己也改为了君主立宪制,但作为这一"过气团体"的遗留,英国在自然科学史上的地位始终赋予英国皇家学会不灭的荣耀。

根据英国皇家学会官方网站的最新数据,学会目前有1700余名来自英联邦各国的院士及其他国家的外籍会员,其中最知名的院士包括数学及物理学家霍金、胚胎移植及肝细胞研究权威安妮·麦克莱伦、互联网发明人蒂姆·伯纳斯·李等。

而在本次50位科学家入选的官网公文中,Hassabis与马斯克名字后面跟了有趣的介绍:

Demis Hassabis CBE FREng FRS, Founder and CEO, DeepMind

Demis Hassabis,大英帝国司令勋章,皇家工程院院士,皇家学院院士,DeepMind创始人及CEO

Elon Musk FRS, Engineer, inventor and entrepreneur

伊隆·马斯克,皇家学院院士,工程师,发明家及企业家

对Hassabis的介绍相对详细,还写了他是DeepMind的创始人;但写到马斯克的时候却一句话都不提特斯拉,仅仅写了他的职业,不知道女王是不是对特斯拉有意见。

得知自己入选后,Demis Hassabis在社交网站上转发了这条消息,并且表示非常荣幸获得这一殊荣,成就了他毕生梦想,也感谢Deepmind团队的努力和支持,还谦虚的表示"瑟瑟发抖":希望我在签字的时候,不使这本拥有350年历史的名录受辱。

目前,中国国籍的皇家学会会员有五人,分别是:杨振宁(1993年当选,2017年2月杨振宁教授放弃美籍,加入中国国籍);赝矢量流部分守恒定理的奠基人周光召(2012年新增选会士名单);生物学家陈竺(2013年当选);中国扫描隧道显微学的开拓者白春礼(2014当选);植物分子遗传学家李家洋(2015年当选)。

欢迎大家关注我们的专栏:量子位 - 知乎专栏

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复"招聘"两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



via 量子位 - 知乎专栏 https://ift.tt/2ru4qnq
RSS Feed

RSS5

IFTTT

伊隆·马斯克与阿尔法狗之父Demis Hassabis共同入选英国皇家学会院士

郭一璞 发自 凹非寺没有和尚 量子位 报道 | 公众号 QbitAI

伊隆·马斯克今天(格林尼治时间5月9日)有了一个新title,英国皇家学会院士。

同时入选的还有阿尔法狗之父、DeepMind创始人Demis Hassabis。

在英国皇家学会官方网站公布的一份名单中,共有50位科学家入选了英国皇家学会院士,其中包含14名女性。

英国皇家学会成立于1660年,是世界上最古老的科学学院,大量世界上最杰出的科学家都是皇家学会的成员。与中国的中科院不同,英国皇家学会并不是英国一个国家研究院,而是所有英联邦都囊括在内的、受到英国女王(同时也是英联邦另外15个国家元首)保护的学术机构。

尽管历史风云变幻,英联邦早已不复往日的辉煌,而英国自己也改为了君主立宪制,但作为这一"过气团体"的遗留,英国在自然科学史上的地位始终赋予英国皇家学会不灭的荣耀。

根据英国皇家学会官方网站的最新数据,学会目前有1700余名来自英联邦各国的院士及其他国家的外籍会员,其中最知名的院士包括数学及物理学家霍金、胚胎移植及肝细胞研究权威安妮·麦克莱伦、互联网发明人蒂姆·伯纳斯·李等。

而在本次50位科学家入选的官网公文中,Hassabis与马斯克名字后面跟了有趣的介绍:

Demis Hassabis CBE FREng FRS, Founder and CEO, DeepMind

Demis Hassabis,大英帝国司令勋章,皇家工程院院士,皇家学院院士,DeepMind创始人及CEO

Elon Musk FRS, Engineer, inventor and entrepreneur

伊隆·马斯克,皇家学院院士,工程师,发明家及企业家

对Hassabis的介绍相对详细,还写了他是DeepMind的创始人;但写到马斯克的时候却一句话都不提特斯拉,仅仅写了他的职业,不知道女王是不是对特斯拉有意见。

得知自己入选后,Demis Hassabis在社交网站上转发了这条消息,并且表示非常荣幸获得这一殊荣,成就了他毕生梦想,也感谢Deepmind团队的努力和支持,还谦虚的表示"瑟瑟发抖":希望我在签字的时候,不使这本拥有350年历史的名录受辱。

目前,中国国籍的皇家学会会员有五人,分别是:杨振宁(1993年当选,2017年2月杨振宁教授放弃美籍,加入中国国籍);赝矢量流部分守恒定理的奠基人周光召(2012年新增选会士名单);生物学家陈竺(2013年当选);中国扫描隧道显微学的开拓者白春礼(2014当选);植物分子遗传学家李家洋(2015年当选)。

欢迎大家关注我们的专栏:量子位 - 知乎专栏

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复"招聘"两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



via 量子位 - 知乎专栏 https://ift.tt/2ru4qnq
RSS Feed

RSS5

IFTTT

M2 模型杀回 Coding 和 Agent 领域,MiniMax 想要「普惠智能」-InfoQ每周精要No.900

「每周精要」 NO. 900 2025/11/01 头条 HEADLINE M2 模型杀回 Coding 和 Agent 领域,MiniMax 想要「普惠智能」 精选 SELECTED a16z 将 3000 万开发者标价 3 万亿 网友:几个初创公司 + 大模型就...